Perioperative OSA Management: the A to Zzzzs...

Agenda

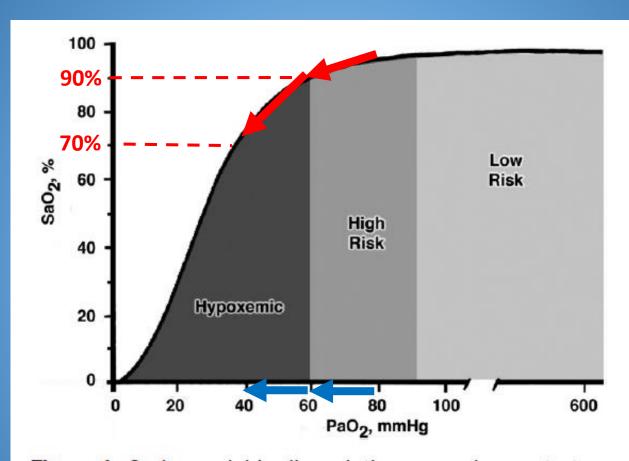
- I. Evolution & discovery
- II. Definition & pathophysiology
- III. Perioperative challenges
- IV. Screening & diagnosis
- V. Perioperative PAP therapy
- VI. Prediction of postoperative risk
- VII. Postoperative precautions
- VIII. Conclusion

I. OSA: Evolution & Discovery

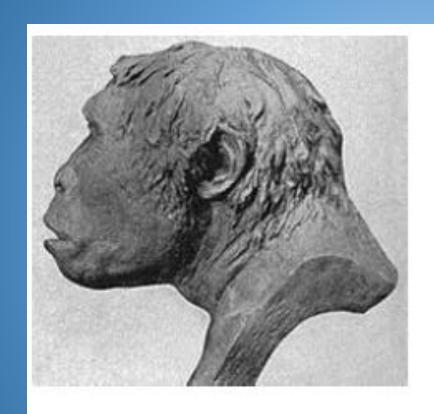
Jeffrey T. Laitman
Otolaryngologist & Anthropologist

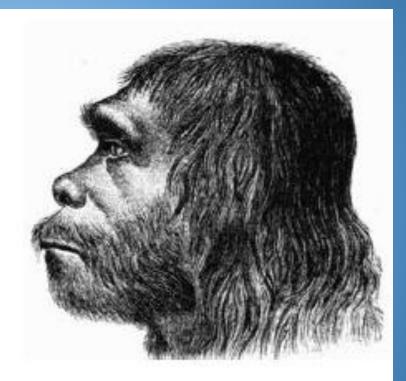
"Chewing, walking, reproducing, thinking are all fine, but first one has to breathe."

How long can humans stop breathing?

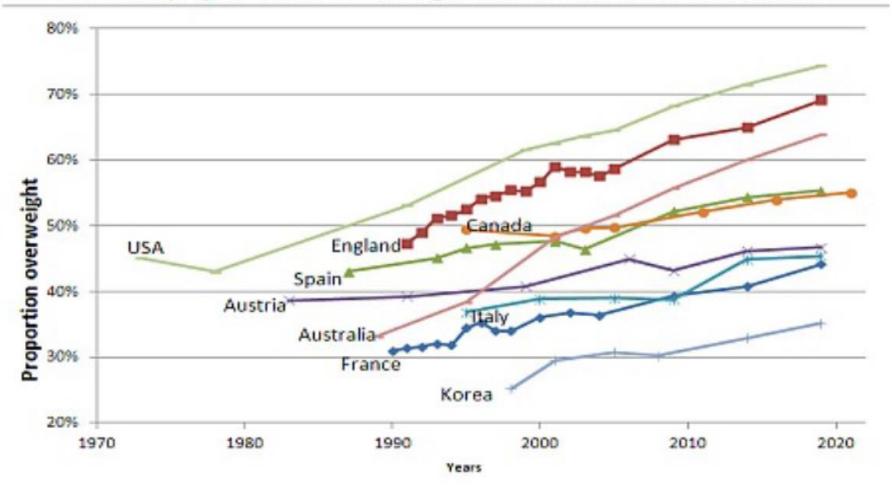

- duration record for breath-holding at surface = 11 min 35 s
 - Stéphane Mifsud, France

- depth record for breath-hold dive= 700 ft
 - Herbert Nitsch, Austria

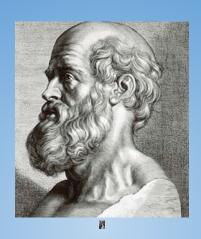

Risk of precipitous desaturation with apnea


Figure 1. Oxyhemoglobin dissociation curve demonstrates the SpO₂ from various levels of PaO₂. Risk categories are overlaid on the curve. Patients near an SpO₂ of 90% are at risk for precipitous desaturation, as demonstrated by the shape of the curve.

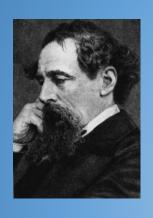
Why are humans susceptible to OSA?

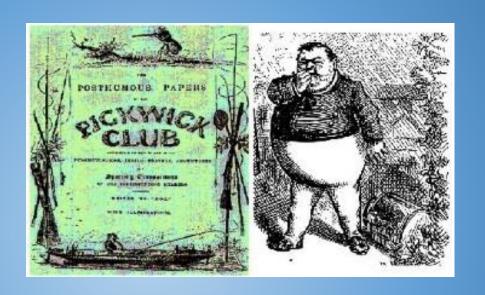

Homo Erectus - Java Man

Neanderthaler



Past and projected future overweight rates in selected OECD countries


400 BCE - Hippocrates



"I have known many persons in sleep groaning and crying out, some in a state of suffocation, some jumping up and fleeing out of doors, and deprived of their reason until they awaken, and afterward becoming well and rational as before, although they be pale and weak; and this will happen not once but frequently."

1836 - Charles Dickens

 Joe, an obese boy with snoring & sleepiness described in The Posthumous Papers of the Pickwick Club:

"And on the box sat a fat and red-faced boy in a state of somnolency"


1937 - Annie Spitz

- medical writer in Germany
- describes 3 pts with snoring, apneas, sleepiness, cyanosis,
 Cheyne-Stokes resp & RHF
- clearly OSA, but believed disorder caused by polycytemia

1956 – Sidney Burwell

Extreme Obesity Associated with Alveolar Hypoventilation – A Pickwickian Syndrome* Am J Med. 1956;21:811-818.

C. Sidney Burwell, Eugene D. Robin, Robert D. Whaley, †Albert G. Bickelmann

- Dean of Harvard Medical School: published 1st case report of a somnolent, obese pt, titled "A Pickwickian syndrome"
- erred badly in evaluating somnolent obese pts only during waking, & attributing cause of somnolence to hypercapnia
- popularity of this paper likely contributed to delay in discovery of sleep apnea for an additional decade

1965 - Discovery of OSA

Neurophysiological studies of abnormal night sleep and the Pickwickian syndrome

R. Jung and W. Kuhlo

Sleep Mechanisms, Progress in Brain Research 1965

Etude polygraphique des manifestations épisodiques (hypnique et respiratoires), diurnes et nocturnes, du syndrome de Pickwick

H. Gastaut, C.A. Tassinari and B. Duron

Rev. Neurol. 1965

1975: Term *sleep apnea* 1st introduced by Christian Guilleminault's team at Stanford. Becomes 1st editor of journal *Sleep* in 1978

Evolution of OSA Treatment

- Surgery for Snoring: Ikematsu
 - 1952: began removing excessive oropharyngeal tissue
 - 1962: reported results PPP with partial uvulectomy in 152 pts
- Surgery for OSA
 - 1969: Tracheostomy (Kuhl et al)
 - 1979: Mandibular advancement (Kuo et al)
 - 1981: UPPP (Fujita et al)
- 1981: Nasal CPAP invention published in Lancet

Colin Sullivan

Moderate to severe OSA: 1st line Tx

Lifestyle changes

+

- lose weight
- sleep on side
- avoid alcohol in evening
- d/c nocturnal sedation
- stop smoking

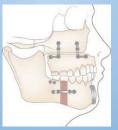
Nasal CPAP

OSA: Efficacy of alternatives to PAP Tx

Oral Appliance

AHI ≤ **10** in **52.6%**

Tracheostomy


AHI ↓ 100%

Nasal EPAP

AHI ↓ <u>55%</u>

MMA

AHI ↓ 87%

HGNS

AHI ↓ **55%**

Bariatric Surgery

AHI ↓ **72%**

RFA AHI **↓** 34% UPPP AHI ↓ 33% Palatal Implants AHI ↓ 26%

LAUP AHI ↓ 18%

II. OSA: Definition & Pathophysiology

= repetitive upper airway obstruction during sleep \rightarrow hypoxemia, hypercapnia, sleep fragmentation, marked swings in intrathoracic pressure, \uparrow sympathetic activity, insulin resistance & inflammatory/oxidative Δ s

Day


Apnea Hypopnea Index

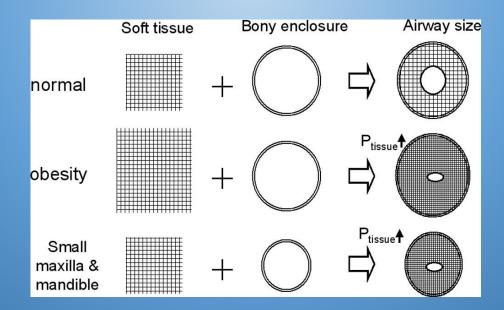
- Apnea = cessation airflow for ≥ 10 s
- **Hypopnea** = $\geq 50\% \downarrow$ of tidal volume for ≥ 10 s
- AHI = number of these events per hour during sleep

AHI	Severity OSA
5-14	~ mild
15-30	~ moderate
> 30	~ severe

Sleep-related obstructive breathing

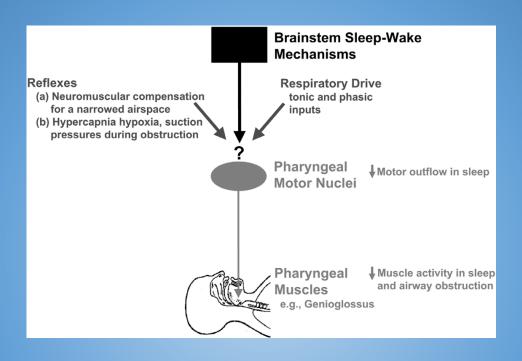
Sleep-Related Breathing Disorders

- Obstructive Sleep Apnea: most common form of SDB
- Central Sleep Apnea
 - 1° idiopathic
 - 2° CSA
 - drug/substance related (rising e.g. methadone population)
 - medical conditions
 - Cheyne-Stokes breathing (CHF & neurologic)
 - non Cheyne-Stokes breathing (neurologic)
 - high altitude periodic breathing
 - complex CSA = emergence of CSA after PAP therapy titrated to eliminate OSAS
- Sleep Related Hypoventilation/Hypoxemic Syndromes
- Mixed pattern e.g. 90% patients with OHVS has OSA



OSA Pathophysiology: Anatomic Hypothesis

excessive pharyngeal airway soft tissue for a given mandible-maxilla size



narrowed, & more collapsible pharyngeal airway

OSA pathophysiology: neural hypothesis

- 1. sleep fragm from OSA may ightarrow excessive ightarrow pharyng tone during sleep
- 2. ? also sensori-neural abn in upper airway propagating OSA

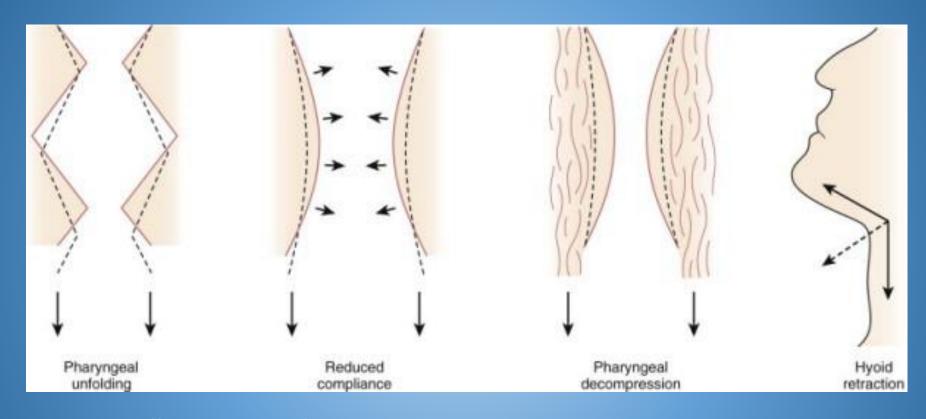

OSA: upper airway inflammation & edema

FIGURE 13.1-36. Trauma (redness) as a result of snoring.

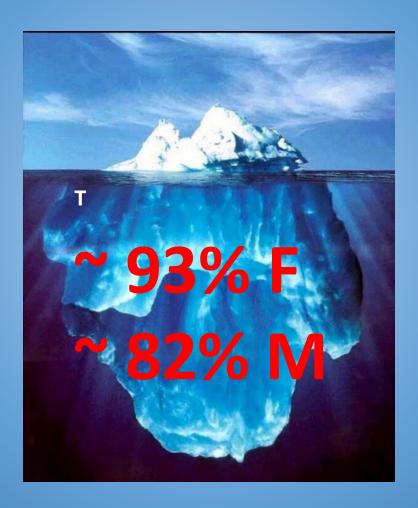
\uparrow Lung volumes $\rightarrow \uparrow$ pharyngeal patency

Van de Graaff WB. Thoracic influence on upper airway patency. J Appl Physiol 1988;65:2124-2131

III. OSA: Perioperative Challenges

OSA: Widely Prevalent

- most prevalent form of SDB
- gen. population: 30-60 yo¹
 - AHI ≥ 5 (all grades OSA): 24% M & 9% F
 - AHI ≥ 15 (moderate to severe OSA): 9% M & 4% F
- surgical populations > gen. population ?
 - bariatric surgery: preval > 70%^{2,3}
 - elective non-upper airway surgery: preval ~ 22%⁴
 - however, preval of treated OSA only 7% in largest academic centre study of preop pts⁵



¹Young. Am J Respir Crit Care Med. 2002 ²Frey. Obes Surg. 2003; ³Lopez. Ann Surg. 2008 ⁴Finkel. Sleep Med. 2009 ⁵Ramachandran. Anesth Analg. 2010

OSA: Vastly Underdiagnosed

Terry Young

Wisconsin Cohort. Young et al. 1997

Sleep Disorder Programs in BC

Diagnostic Accreditation Program

- Vancouver (UBCH; BCCH)
- Victoria (Royal Jubilee Hospital)
- Richmond
- Surrey
- Abbotsford
- Kelowna (KGH)
- Kamloops (Royal Inland Hospital)
- Nanaimo

OSA: High Prevalence Comorbidities

Category	Condition	Prevalence (%)
Cardiac	Treatment-Resistant HTN	63-83
	CHF 🔵	76
	` ₩ IHD	38
	AF	49
	Dysrhythmias	58
Respiratory	Asthma	18
	Pulmonary HTN	77
Neurologic	IHD AF Dysrhythmias Asthma Pulmonary HTN First-Ever stroke	71-90
Metabolic	DM Type II	36
	Metabolic Syndrome	50
	Hypothyroidism	45
	Morbid Obesity	50-90
Surgical	Mariatric Surgery	71
	Intracranial Tumor Surgery	64
	Epilepsy Surgery	33
Other	GERD	60
	Nocturia Nocturia	48
	Alcoholism	17
	Primary Open-Angle Glaucoma	20
	Head and Neck Cancer	76
Adap	oted from Seet & Chung. Anesthesiology Clin. 2010;28	:199-215

OSA: ↑ Incidence Difficult Intubation

	General population	OSA in adult obese population ²
Difficult intubation	0.5-2%1	13%³; 24%⁴
Failed intubation	0.045-0.3 ¹	5% ⁵

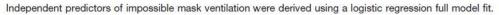
- Crosby, E. The unanticipated difficult airway. Can J Anesth 2005 / 52:6 / pp. 562-567
- Benumof, J. OSA in the adult obese patient: implications for airway management. Anesthesiology Clin N Am 20 (2002) 789–811
- Buckley, et al. Anaesthesia in the morbidly obese. Anesthesia 1983;38:840-51
- Cherit, et al. Anesthesia for morbidly obese patients. World J Surg 1998;22:969-73.
- Esclamado, et al. Perioperative complications and risk factors in the surgical treatment of OSAS. Laryngoscope 1989; 99:1125–9.

OSA: Predictor Impossible Mask Ventilation

Anesthesiology 2009; 110:891-7

Copyright © 2009, the American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins, Inc.

Prediction and Outcomes of Impossible Mask Ventilation


A Review of 50,000 Anesthetics

Sachin Kheterpal, M.D., M.B.A.,* Lizabeth Martin, M.D.,† Amy M. Shanks, M.S.,‡ Kevin K. Tremper, Ph.D., M.D.§

- University Hospital Ann Arbor, Michigan; 2004 to 2008
- 53,041 attempts at mask ventilation recorded
- 77 cases of impossible mask ventilation (0.15%)
 - 19 (25%) of those also demonstrated difficult intubation
- Sleep Apnea 1 of 5 independent predictors of impossible mask ventilation

Predictor	ß Coefficient	Standard Error	P Value	Weighted Points*	Adjusted Hazard Ratio (95% Confidence Interval
Neck radiation changes	1.964	0.628	0.002	6	7.1 (2.1–24.4)
Male sex	1.206	0.322	< 0.001	4	3.3 (1.8-6.3)
Sleep apnea	0.859	0.302	0.005	3	2.4 (1.3-4.3)
Mallampati III or IV	0.678	0.276	0.014	2	2.0 (1.1-3.4)
Presence of beard	0.639	0.284	0.024	2	1.9 (1.1-3.3)

^{*} Points in the weighted score were assigned to each risk factor by dividing each ß coefficient by the smallest ß coefficient of the independent predictors, multiplying by two, and rounding to the nearest integer.

OSA: ↑ severity in postop period

- pharmacological airway challenge
 - $-\downarrow$ upper airway muscle tone (hypnotics; opioids; NMB)
 - ↓ ventilatory drive (opioids)
 - ↓ arousal response (hypnotics)
- airway edema
 - airway/head/neck/C-spine procedures
 - prolonged Trendellenburg/prone position
 - significant fluid administration
- \downarrow lung volumes $\rightarrow \uparrow$ collapsibility pharynx
 - trachea exerts longitudinal traction during deep insp
- REM sleep rebound POD 3-4

 —↑ resp depression & ↑ sympathetic activity

OSA: ↑ in Perioperative Morbidity

ANESTHESIA & ANALGESIA

January 2011 • Volume 112 • Number 1

Perioperative Pulmonary Outcomes in Patients with Sleep Apnea After Noncardiac Surgery

Stavros Memtsoudis, MD, PhD,* Spencer S. Liu, MD,* Yan Ma, PhD,† Ya Lin Chiu, MS,† J. Matthias Walz, MD,† Licia K. Gaber-Baylis, BA,† and Madhu Mazumdar, PhD†

British Journal of Anaesthesia 109 (6): 897–906 (2012) Advance Access publication 6 September 2012 · doi:10.1093/bja/aes308 BJA

Meta-analysis of the association between obstructive sleep apnoea and postoperative outcome

R. Kaw^{1,2*}, F. Chung³, V. Pasupuleti⁴, J. Mehta³, P. C. Gay^{6,7} and A. V. Hernandez⁵

- ↑ desats, resp failure, aspiration, re-intubation, ARDS, dysrhythmias & myocard injury.
- † requirement postop vent support, unplanned transfer to ICU, admission to SDU, telemetry services, longer hospital stay, & consume more economic resources.

Does OSA $\rightarrow \uparrow$ Periop Mortality?

- ↑ in all cause mortality associated with OSA in general population, correlating with severity OSA
- unexpected/unexplained postop deaths within 7 days postop most often occur at night
 - cardio-resp events related to sleep proposed as most likely cause of postop mortality at night
- anecdotes/reports: preventable periop deaths following resp arrest do occur in pts with OSA

Busselton Health Study
Rosenberg et al. Br J Surg 1992;79:1300-1302
Rosenberg-Adamsen. Br J Anaesth. 1996;76:552-559
Gill et al. Br J Anaesth 1992;68:471-473
Cotes. Anesth Analg. 2014

OSA & Periop Mortality: data lacking...

prospective studies

 ethical issue with denying known sleep apnea pts approp level of risk reduction care, including \(\bar{1}\) level of postop monitoring

retrospective studies

- difficult/impossible to retrospectively determine sequence of events leading up to arrest
- unexplained cardioresp arrest may be attributable to unDx OSA in surgical pts, however this connection has yet to be tested by RCTs

Death or Neurologic Injury after Tonsillectomy in Children with a Focus on Obstructive Sleep Apnea: Houston, We Have a Problem! Anesth Analg 2014:118:1276–83

Charles J. Coté, MD,* Karen L. Posner, PhD,† and Karen B. Domino, MD, MPH†

Charles J Cote
Professor of Anesthesia
Harvard Medical School

"Death after tonsillectomy related to hemorrhage may not be preventable, but death due to apnea is preventable"

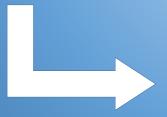
OSA: Periop Medicolegal Perspective

- Benumof: "expert opinion" in ~ 50 OSA medico-legal cases in US
 - ~ 30% cases intubation/extubation misadventures (usually latter)
 - ~ 70% cases found "dead in bed"- prototypical OSA malpractice case

J. Benumof

- clinical components of prototypical "dead in bed" case:
 - 1. severe OSA
 - 2. morbid obesity
 - 3. isolated ward room
 - 4. no monitoring
 - **5.** receiving narcotics
 - 6. painful incision
 - 7. off O₂
 - 8. off CPAP device

"? OSA" is not a diagnosis!


"? OSA", like "? angina", is a problem requiring workup, especially if daytime somnolence

"? OSA" not followed up

Medical Malpractice Lawyer

OSA: Summary of Perioperative Challenges

- widely prevalent, vastly under Dx
- † incidence periop complications
 - signif comorbidities
 - ↑ incid difficult airway
 - postop exacerbation of OSA
- relative shortage resources
 - preop: diagnostic bottle neck
 - postop: limited monitored beds
- preventable deaths do occur

IV. OSA: Screening

- cardinal symptoms
 - snoring/observed apneas/tiredness
- physical examination
 - anthropometrics: BMI/neck circumference
 - morphometrics: upper airway
- multivariate clinical prediction tools
 - Flemons SACS: 1994
 - Berlin Questionnaire: 1996
 - ASA Checklist: 2006
 - STOP-BANG Score: 2008
 - P-SAP Score: 2010

OSA: Snoring

- most frequently reported symptom in OSAHS
 - -70-95% of such pts
- however, poor predictor OSA
 - -gen pop: 35-45% M, & 15-28% F snore

Central Obesity

= single physical finding most predictive of OSAS

- BMI
 - 60-90% pts with OSA have BMI > 30 (Benumof)
 - BMI > 40: AHI ≥ 15 in ~50% M, & ~20% F (Wisconsin Cohort)
- Neck (or waist) size may be better indicators of OSA severity
 - neck circ: > 43 cm (17") in M; > 41 cm (16") in F
 - waist circ: > 102 cm (40")

STOP-BANG OSA Screening Tool

			Yes	No
S	S noring	Do you snore loudly (loud enough to be heard through closed doors)?		
Т	T ired	Do you often feel tired, fatigued, or sleepy during daytime?		
0	O bserved	Has anyone observed you stop breathing during your sleep?		
P	Blood Pressure	Do you have or are you being treated for high blood pressure?		
В	BMI	BMI more than 35 kg/m ² ?		
Α	A ge	Age over 50 years old?		
N	Neck circumference	Neck circumference greater than 40 cm?		
G	G ender	Male?		

Score	Probability of moderate to severe OSA
5-8	high
3-4	intermediate
0-2	low

Frances Chung

British Journal of Anaesthesia Page 1 of 8 doi:10.1093/bja/aes022

High STOP-Bang score indicates a high probability of obstructive sleep apnoea

F. Chung^{1*}, R. Subramanyam¹, P. Liao¹, E. Sasaki¹, C. Shapiro² and Y. Sun¹

Table 4 Predicted probabilities per score for all OSA, moderate/severe OSA, and severe OSA. CI, confidence interval; AHI, apnoea-hypopnoea index; *n*, number; Mod/Sev OSA, moderate/severe OSA

Score	All OSA (A	All OSA (AHI>5)		v OSA (AHI>15)	Severe OSA (AHI>30)		
	n	Probability (95% CI)	n	Probability (95% CI)	n	Probability (95% CI)	
0-2	81	0.46 (0.39-0.53)	31	0.18 (0.13-0.24)	7	0.04 (0.02-0.08)	
3	123	0.72 (0.65-0.78)	61	0.36 (0.29-0.43)	22	0.13 (0.09-0.19)	
4	121	0.73 (0.66-0.79)	69	0.42 (0.34-0.49)	30	0.18 (0.13-0.25)	
5	95	0.77 (0.69-0.84)	62	0.50 (0.42-0.59)	37	0.30 (0.23-0.39)	
6	54	0.79 (0.68-0.87)	39	0.57 (0.45-0.69)	22	0.32 (0.22-0.44)	
7 and 8	36	0.86 (0.72-0.93)	25	▼ 0.60 (0.44-0.73)	16	0.38 (0.29-0.53)	

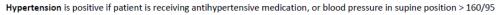
 \uparrow probability of OSA with \uparrow STOP-Bang Score STOP-Bang score \geq 5: indicates high probability of moderate-severe OSA

Sleep Apnea Clinical Score: 1994

Ward Flemons

Likelihood Ratios for a Sleep Apnea Clinical Prediction Rule

Am J Respir Crit Care Med Vol 150. pp 1279-1285, 1994


W. WARD FLEMONS, WILLIAM A. WHITELAW, ROLLIN BRANT, and JOHN E. REMMERS

Departments of Medicine and Community Health Sciences, Foothills Hospital and University of Calgary, Calgary, Alberta, Canada

Physician to circle sleep apnea clinical score on table

Sleep Apnea Clinical Score (SACS)

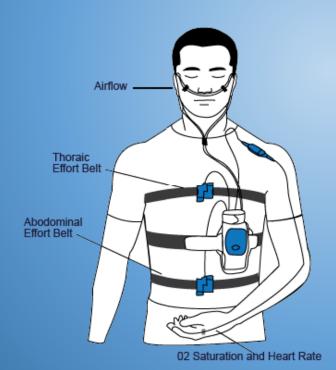
	Not Hypertensive				Hypertensive			
		ring &/or Cho			Snoring &/or Choking			
	7	usually/always	ال	(usually/always)				
Neck		One	Both		One	Both		
Circumference	None	snoring <u>or</u>	snoring <u>&</u>	None	snoring <u>or</u>	snoring <u>&</u>		
(cm)		choking	choking		choking	choking		
<30	0	0	1	0	1	2		
30-31	0	0	1	1	2	4		
32-33	0	1	2	1	3	5		
34-35	1	2	3	2	4	8		
36-37	1	3	5	4	6	11		
38-39	2	4	7	5	9	16		
40-41	3	6	10	8	13	22		
42-43	5	8	14	11	18	30		
44-45	7	12	20	15	25	42		
46-47	10	16	28	21	35	58		
48-49	14	23	38	29	48	80		
>49	19	32	53	40	66	110		

Choking can also be described as gasping or snorting

Usually is defined as 3-5 times per week

V. OSA: Diagnosis

"OK, Mrs. Tully. We want you to relax, get a good night's sleep, and we'll evaluate any sleep issues that you have."



Sleep Study: Levels

- Level I: Full In-laboratory Polysomnography (technician attended)
 - 1. airflow
 - 2. respiratory effort
 - 3. SpO₂
 - 4. ECG or HR
 - 5. EEG
 - 6. EOG
 - 7. chin EMG
 - 8. (recommended: body position & leg EMG)
- Level II: Full Ambulatory Polysomnography (unattended)
- Level III: Portable Monitor (Home Sleep Testing)
 - 1. airflow
 - 2. respiratory effort
 - 3. SpO₂
- Level IV: Overnight Oximetry

PACU: ? biggest sleep laboratory

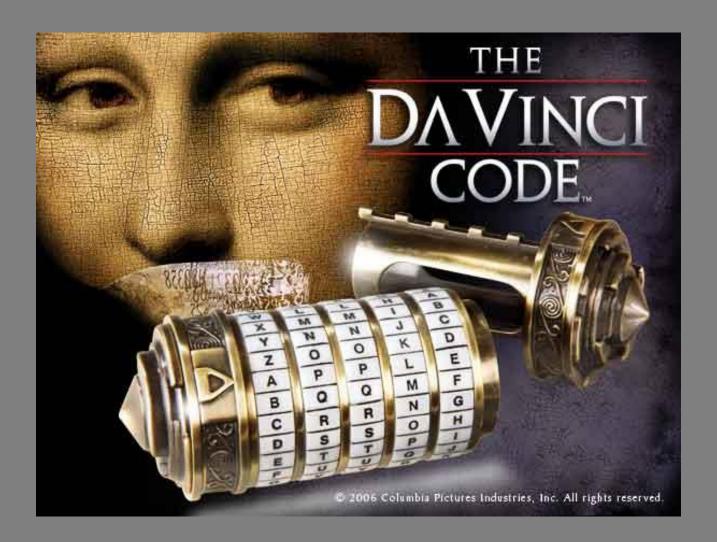
VI. OSA & perioperative PAP therapy

- Professional Guidelines (ASA, CTS, SASM)
 - initiate PAP Tx preop
 - resume PAP Tx postop
- Postop period not ideal time to initiate
 PAP Tx in PAP naive

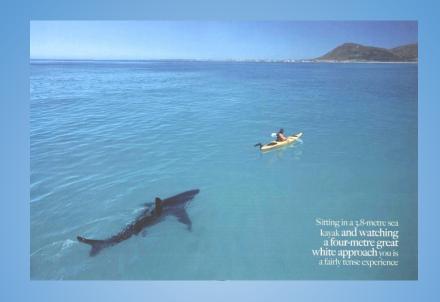
OSA: potential benefits preop PAP Tx

- † compliance with postop PAP Tx
- ↓ edema & inflammation upper airway
- improved genioglossus fxn
- can reverse CVS & metab disturbances

OSA: postop PAP Tx in PAP naive patient


ASA OSA Task Force: consider CPAP or NIPPV if frequent or severe airway obstruction or hypoxemia occurs postop

- high risk situation
- significant compliance challenge



VII. OSA: Prediction of Postop Risk

The Challenge of Postop Risk Prediction

to identify pts at 1 risk from sleep apnea with enough sensitivity to prevent arrests & enough specificity to avoid occupying monitored beds unnecessarily

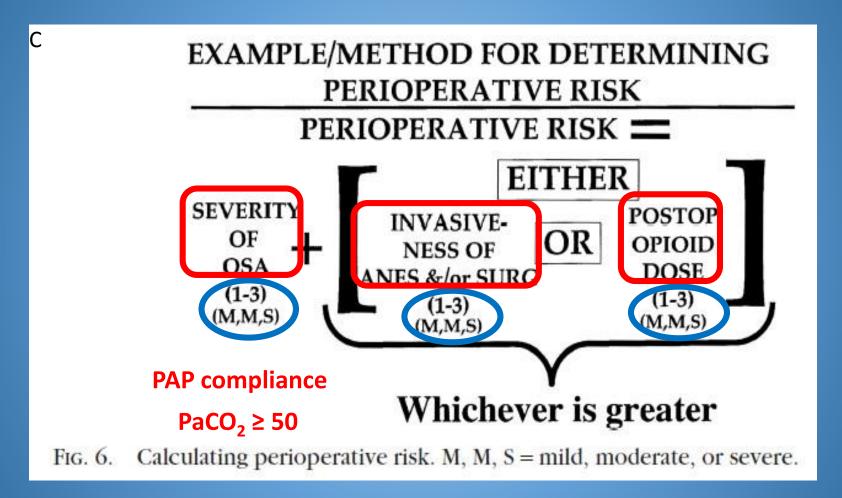
"Risk of OSA" - a potentially confusing phrase!

OSA screening tool

(e.g. STOP-BANG or Flemons SACS)

Risk of "postop complications from OSA"

2-component risk prediction model


severity OSA & comorbidities impact surgery/anesthesia postop opioid requirement

postop indicators of risk

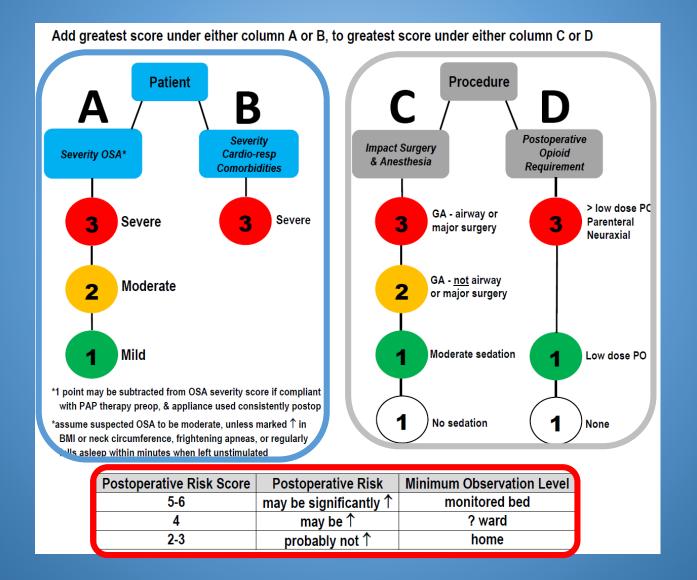
OSA: Determinants of Postoperative Risk

ASA-OSA: Postop Risk Scoring System

							_
Table	•	OSA	Scoring	Ç,	vetom.	Evame	sle
Table	4	COM	SCOTHIE		vstem:	CAami	м

	Points
A. Severity of sleep apnea based on sleep study (clinical indicators if sleep study not available) Point score (0-3)*† Severity of OSA (table 1)	•
None	0
Mild	1
Moderate	2
Severe	3
B. Invasiveness of surgery and anesthesia. Point	score
(0–3)	
Type of surgery and anesthesia	
Superficial surgery under local or peripheral r	ierve 0
block anesthesia without sedation	
Superficial surgery with moderate sedation or	1
general anesthesia	4
Peripheral surgery with spinal or epidural	1
anesthesia (with no more than moderate	
sedation)	0
Peripheral surgery with general anesthesia	2
Airway surgery with moderate sedation Major surgery, general anesthesia	3
Airway surgery, general anesthesia	3

C. Requirement for postoperative opioids. Point score	
(0–3)	
Opioid requirement	
None	0
Low-dose oral opioids	1
High-dose oral opioids, parenteral or neuraxial	3
opioids	
D. Estimation of perioperative risk. Overall score = the	
score for A plus the greater of the score for either	
B or C. Point score (0-6)‡	


A scoring system similar to this table may be used to estimate whether a patient is at increased perioperative risk of complications from obstructive sleep apnea (OSA). This example, which has not been clinically validated, is meant only as a guide, and clinical judgment should be used to assess the risk of an individual patient.

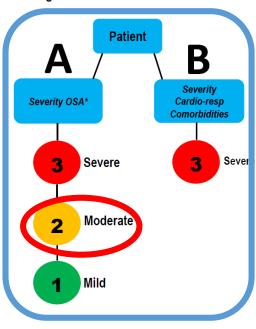
*One point may be subtracted if a patient has been on continuous positive airway pressure (CPAP) or noninvasive positive-pressure ventilation (NIPPV) before surgery and will be using his or her appliance consistently during the postoperative period. †One point should be added if a patient with mild or moderate OSA also has a resting arterial carbon dioxide tension (Paco₂) greater than 50 mmHg. ‡ Patients with score of 4 may be at increased perioperative risk from OSA; patients with a score of 5 or 6 may be at significantly increased perioperative risk from OSA.

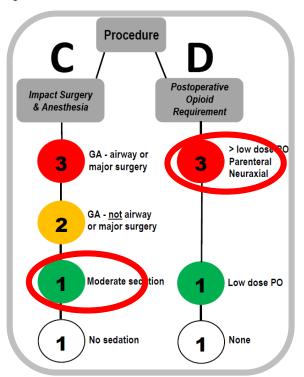
OSA: Postoperative Risk Score

Vancouver Acute Department of Anesthesia & Perioperative Care

Postoperative Risk Score: Example 1

TKR


OSA: moderate; no PAP Tx


Comorb: none

Procedure: peripheral; SAB; sedation

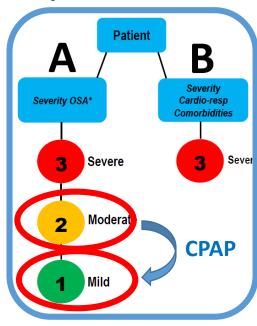
Opioid: PCA

Add greatest score under either column A or B, to greatest score under either column C or D

Postoperative Risk Score		isk Score	Postoperative Risk	Minimum Observation Level		
	5-6		may be significantly ↑		monitored bed	
4			may be ↑	? ward		
2-3			probably not ↑	home		

Postoperative Risk Score: Example 2

MIS Chole

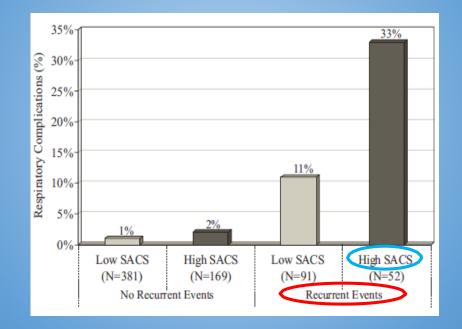

OSA: moderate; on CPAP

Comorb: no severe cardio-resp issues

Procedure: GA; not major

Opioid: low dose PO

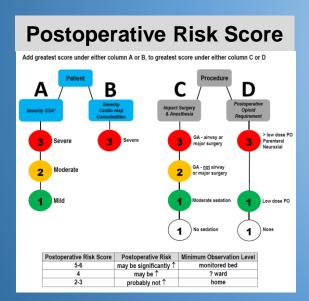
Add greatest score under either column A or B, to greatest score under either column C or D


Postoperative Risk Score		isk Score	Postoperative Risk	Minimum	tion Level	
5-6			may be significantly ↑	monitored bed		
4			may be ↑	2 ward		\
	2-3		probably not ↑		home	

Identification of Patients at Risk for Postoperative Respiratory Complications Using a Preoperative Obstructive Sleep Apnea Screening Tool and Postanesthesia Care Assessment

Bhargavi Gali, M.D.,* Francis X. Whalen, M.D.,* Darrell R. Schroeder, M.S.,† Peter C. Gay, M.D.,‡ David J. Plevak, M.D.§

Bhargavi Gali


Conclusion: recurrent resp events in PACU are signif predictors of risk of postop resp complications, esp if preop OSA screening test +ve

OSA: 2-component Postop Risk Prediction

www.stopbang.ca

Postoperative Risk Indicators

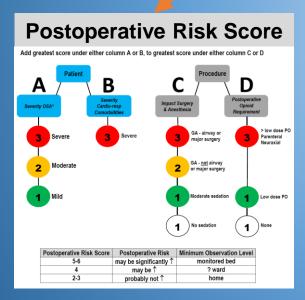
- Recurrent respiratory events
- Newly required PAP therapy
- Respiratory failure
- Significant risk of myocardial ischemia/dysrhythmia
- Opioid or sedative requirement not stabilized
- Pain-sedation mismatch

VIII. OSA: Postoperative Precautions

- 1. Resume PAP Tx
- 2. Avoid supine position if possible
- 3. Extended PACU stay
- 4. Monitored bed for patients at ↑ risk
- 5. Respirology consult for high risk patients
- 6. Caution with opioids/sedatives
- 7. Judicious O₂ supplementation
- 8. Provide discharge instructions

OSA: Extended PACU Stay

- 2006 ASA-OSA Guideline:
 - for a median of 3 hrs longer
- 2014 ASA-OSA Guideline:
 - lit insuff to offer guidance re. approp duration of postop resp monitoring in pts with OSA
 - continuous monitoring should be maintained "as long as pts remain at ↑ risk"
- 2011: Seet & Chung: Algorithms for Periop OSA Mx
 - 30-60 min after standard discharge criteria met (based on Gali's study)



OSA: Indications for a Monitored Bed

High Postoperative Risk Score,

or

Presence of any Postoperative Risk Indicators

Postoperative Risk Indicators

- Recurrent respiratory events
- Newly required PAP therapy
- Respiratory failure
- Significant risk of myocardial ischemia/dysrhythmia
- Opioid or sedative requirement not stabilized
- Pain-sedation mismatch

OSA: Definition of a Monitored Bed

- = continuous oximetry & possibility of early nursing intervention:
 - PACU/SDU/other critical care unit, or
 - dedicated, approp trained professional observer in room, or
 - remote oximetry monitoring by telemetry on ward
- consider adding cardiac monitoring if at risk of myocardial ischemia or dysrhythmia
- intermittent oximetry, or continuous oximetry without continuous observation, does <u>not</u> provide the same level of safety, and probably does not ↓ risk

CPAP is <u>not</u> a substitute for adequate postop monitoring

OSA: Discharge from Monitored Bed

- no resp interventions required overnight while resting/sleeping in an unstimulating environment, and
- no other indicators present for ongoing observation in a monitored bed

VA Department of Anesthesia & Perioperative Care – 2013

Sleep Apnea: O₂ therapy – less is more?

- May prolong apneas, exacerbate hypercapnia & hinder timely detection apnea & hypoventilation
- Titrate to minimum flow maintaining target baseline SpO₂, e.g.:
 - 1. O₂ @ 0 to 4 L/min by NP to maintain baseline SpO₂ at:
 - a. ≥ 94%, or
 - b. ≥ 90% (if hypercapnia)
 - 2. d/c O₂ if baseline SpO₂ maintained on room air

Sleep Apnea: Room air challenge

- = 15 minutes of room air, to establish baseline SpO₂
- if baseline room air SpO₂ below 90%, patient is in hypoxemic respiratory failure, indicating ongoing need for a monitored bed, ABG & consideration of a Respirology consult
- number & severity of desats during this time should also be considered

IX. Conclusion: 5 more slides...

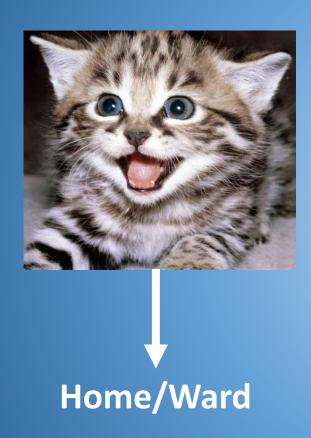
Looking ahead...

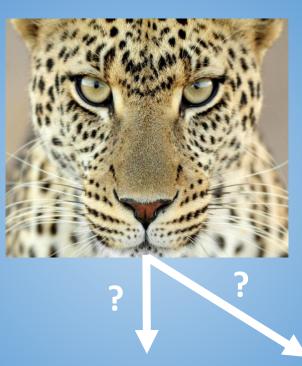
OSA: Electronic monitoring

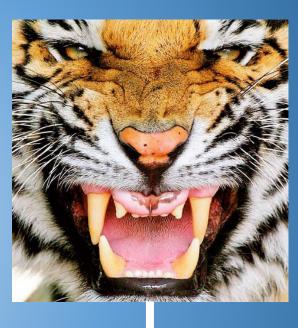
- Accoustic impedance
- Capnography
- Non-invasive ventilation
- Photoplethysmography

OSA: continuous SpO₂ with alarm system

- finger probes for continuous SpO₂ seem to be better tolerated than neck sensors for accoustic resp monitoring, nasal cannulas for capnography, or chest straps for RR monitoring







Sleep Apnea – Spectrum of Postop Risk...

Monitored bed

Charles J Cote
Professor of Anesthesia
Harvard Medical School

"death due to apnea is preventable"

